I picked up a new car equipped with the navigation system. It's a pretty amazing thing -- it always knows where I am, gives me voice directions to reach my destination, and even recognizes
my voice. For example, I can say "Go Home" or "Japaneese Restaurants" to the microphone, and it guides me all the way to the corresponding place in a nice soft female voice. As I drive on, the marker on the screen representing my car moves on the map screen, sorrounded by the nicely marked streets, highways, and points of interests (such as ATMs, gas stations, hospitals, parking garages, hotels, etc.)
The way it works is amazing, too. Every one second, three US military satellites transmit signals from the outer space. The signals contain a time stamp and the current satellite location. When the receiver inside my car gets the signal, it compares the current time with the time stamp of the received signal, takes the difference, multiplies it by the speed of light, and viola, it knows how far the car is from the satellite. That's not enough to pinpoint the car location. Since we live in a three-dimensional world, the receiver in the car needs data from three satellites to find that point where the three arcs (representing the distances from satellites) intersect. That point is the car current location. It looks something like this (sorry for the sketchy aspects of it -- it's just a 3-minute pic done with MS Paint):
Now, here is the math challenge of the day. The satellites are carrying atomic clocks, but my car receiver uses a regular clock. The atomic clock is too heavy and too expensive to carry around. Notice, however, that if the clock in my car is off by only 1/10000 of a second, the error in current position location would be 18.7 miles (that's how far the signal travels in 1/10000 of a second), rendering my navigation system useless. But in fact, the accuracy of it is about 50 feet.
Your challenge is to figure out how the receiver in the car can obtain such accuracy with the use of a regular (very imprecise) clock. Hint: it uses the
fourth satellite to do that. The fourth satellite does exactly the same thing as the other three satellites -- every one second, it broadcats a time stamped signal that contains the satellite current location. And yes, the problem is purely mathematical.
For the purposes of this homework assignment, don't think in terms of changing speed of light (in vacuum versus the atmosphere) or relativistic effects (yes, the atomic clocks in space run slower than they run on Earth). The computer inside the car does compensate for both effects, but it's irrelevant for the purposes of this problem.
[ February 22, 2005: Message edited by: John Smith ]